skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sun, L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 27, 2026
  2. Free, publicly-accessible full text available December 9, 2025
  3. Free, publicly-accessible full text available December 12, 2025
  4. Abstract There is great uncertainty in the atmospheric circulation response to future Arctic sea ice loss, with some models predicting a shift towards the negative phase of the North Atlantic Oscillation (NAO), while others predicting a more neutral NAO response. We investigate the potential role of systematic model biases in the spread of these responses by modifying the unperturbed (or ‘control’) climate (hereafter referred to as the ‘basic state’) of the Canadian Earth system model version 5 (CanESM5) in sea ice loss experiments based on the protocol of the Polar Amplification Model Intercomparison Project. We show that the presence or absence of the stratospheric pathway in response to sea ice loss depends on the basic state, and that only the CanESM5 version that shows a weakening of the stratospheric polar vortex features a strong negative NAO response. We propose a mechanism that explains this dependency, with a key role played by the vertical structure of the winds in the region between the subtropical jet and the stratospheric polar vortex (‘the neck region winds’), which determines the extent to which anomalous planetary wave activity in response to sea ice loss propagates away from the polar vortex. Our results suggest that differences in the models’ basic states could significantly contribute to model spread in the simulated atmospheric circulation response to sea ice loss, which may inform efforts to narrow the uncertainties regarding the impact of diminishing sea ice on mid-latitude climate. 
    more » « less
  5. Abstract Possessing only essential genes, a minimal cell can reveal mechanisms and processes that are critical for the persistence and stability of life1,2. Here we report on how an engineered minimal cell3,4contends with the forces of evolution compared with theMycoplasma mycoidesnon-minimal cell from which it was synthetically derived. Mutation rates were the highest among all reported bacteria, but were not affected by genome minimization. Genome streamlining was costly, leading to a decrease in fitness of greater than 50%, but this deficit was regained during 2,000 generations of evolution. Despite selection acting on distinct genetic targets, increases in the maximum growth rate of the synthetic cells were comparable. Moreover, when performance was assessed by relative fitness, the minimal cell evolved 39% faster than the non-minimal cell. The only apparent constraint involved the evolution of cell size. The size of the non-minimal cell increased by 80%, whereas the minimal cell remained the same. This pattern reflected epistatic effects of mutations inftsZ, which encodes a tubulin-homologue protein that regulates cell division and morphology5,6. Our findings demonstrate that natural selection can rapidly increase the fitness of one of the simplest autonomously growing organisms. Understanding how species with small genomes overcome evolutionary challenges provides critical insights into the persistence of host-associated endosymbionts, the stability of streamlined chassis for biotechnology and the targeted refinement of synthetically engineered cells2,7–9
    more » « less